On the Impact of Formal Verification on Software
Development

ERIC MUGNIER, University of California at San Diego, USA
YUANYUAN ZHOU, University of California at San Diego, USA
RANJIT JHALA, University of California at San Diego, USA
MICHAEL COBLENZ, University of California at San Diego, USA

Auto-active verifiers like Dafny aim to make formal methods accessible to non-expert users through SMT
automation. However, despite the automation and other programmer-friendly features, they remain sparsely
used in real-world software development, due to the significant effort required to apply them in practice. We
interviewed 14 experienced Dafny users about their experiences using it in large-scale projects. We apply
grounded theory to analyze the interviews to systematically identify how auto-active verification impacts
software development, and to identify opportunities to simplify the use, and hence, expand the adoption of
verification in software development.

CCS Concepts: » Software and its engineering — Formal software verification.
Additional Key Words and Phrases: User study, Dafny, Grounded theory

ACM Reference Format:

Eric Mugnier, Yuanyuan Zhou, Ranjit Jhala, and Michael Coblenz. 2025. On the Impact of Formal Verification
on Software Development. Proc. ACM Program. Lang. 9, OOPSLA2, Article 403 (October 2025), 27 pages.
https://doi.org/10.1145/3763181

1 Introduction

Verifiers such as Dafny [Leino 2010], F* [Swamy et al. 2016] and Verus [Lattuada et al. 2023]
are becoming increasingly prevalent in both academia and industry. Just in the past few years,
projects verifying cloud controllers [Sun et al. 2024], and security modules [Zhou et al. 2024]
have been published in communities outside of programming languages and formal methods,
including operating systems and software engineering conferences, and more importantly, have
been deployed in real-world systems [Chakarov et al. 2025; Swamy et al. 2022].

Despite the above successes, actual users of such verifiers remain few and far between. We
speculate that the adoption of and hesitation in the use of such verifiers stems from their auto-
active [Leino and Moskal 2010] nature. Unlike proof assistants, which require users to write proofs
manually, auto-active verifiers use SMT solvers to attempt to automatically generate proofs. On
the bright side, adoption is driven by the ability to automate low-level proof details to SMT solvers,
enabling users to focus on higher-level aspects of their proofs. However, dark clouds swiftly appear
when the automation inevitably fails, and the user is left to decipher what knowledge the verifier
has (and lacks) to provide hints that can guide the verifier to a valid proof. Consequently, the
automation provided by these verifiers places them in an uncanny valley in terms of usability,

Authors’ Contact Information: Eric Mugnier, University of California at San Diego, La Jolla, USA, emugnier@ucsd.edu;
Yuanyuan Zhou, University of California at San Diego, La Jolla, USA, yyzhou@ucsd.edu; Ranjit Jhala, University of
California at San Diego, La Jolla, USA, rjhala@ucsd.edu; Michael Coblenz, University of California at San Diego, La Jolla,
USA, mcoblenz@ucsd.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/10-ART403

https://doi.org/10.1145/3763181

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 403. Publication date: October 2025.

https://orcid.org/0009-0006-4967-6820
https://orcid.org/0009-0006-0980-2538
https://orcid.org/0000-0002-1802-9421
https://orcid.org/0000-0002-9369-4069
https://doi.org/10.1145/3763181
https://orcid.org/0009-0006-4967-6820
https://orcid.org/0009-0006-0980-2538
https://orcid.org/0000-0002-1802-9421
https://orcid.org/0000-0002-9369-4069
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3763181

403:2 Eric Mugnier, Yuanyuan Zhou, Ranjit Jhala, and Michael Coblenz

defeating the purpose of the tools, which was to make the fire of formal verification available to
mere mortals without doctorates in formal methods.

How are verifiers used in practice? In this work, we chart this valley by investigating how auto-
active verifiers are actually used in real-world software development. To this end, we recruited 14
experienced software engineers averaging five years of work experience, who have used auto-active
verifiers like Dafny. We then interviewed them and analyzed these interview logs using grounded
theory [Charmaz 2014] to identify patterns and relationships in the data to answer three questions:
(RQ1) First, what expectations should developers have regarding how verification might impact the
design and implementation of software? (RQ2) Second, what practices do experience developers
use to apply verification effectively? (RQ3) Third, what opportunities exist to simplify the use and,
hence, expand the adoption of verification in software development?

Formal-first vs. Engineering-first Developers We observed two distinct groups of participants.
Formal-first developers have deep formal methods expertise that was then applied to real-world
software engineering, and engineering-first developers were experienced software engineers who
went on to use verification in a project. We then find that even though verified software development
has many of the same phases as traditional software development—requirements, implementation,
testing, review, packaging, maintenance, etc—developers from the different groups have very
different expectations and practices for the phases, summarized via three concrete contributions.

1. Designing & Building Verified Software (§ 4) Our first contribution addresses RQ1 with
an analysis of how the use of auto-active verification impacts the design and implementation
of software. Of course, the design phase is impacted by the need to codify requirements as for-
mal specifications. Crucially, the implementation phase is also affected, as now developers must
write auxiliary assertions to prove lemmas, which are then combined to yield proofs of top-level
specifications. There are two more key phases: debugging failed proof attempts and hardening
the code to ensure that proofs continue to hold in the face of changes to SMT solver heuristics.
When debugging, we find that formal-first developers often want to spend time to root cause the
failures, while engineering-first developers might prefer to fix suggestions that let them move on.
Similarly, we find that formal-first developers tend to appreciate the benefits of automation and
how it avoids the need to spell out low-level details, while engineering-first developers consider
the attendant proof-brittleness problems something that can be mitigated via discipline encoded in
style guidelines.

2. Testing & Deploying Verified Software (§ 5,§ 6,§ 7) Our second contribution focuses on
RQ2 via an analysis of how verification impacts testing, review, deployment, and downstream
maintenance of software. Here, we find that a tight integration with classical software development
practices is key, as testing and code reviews provide rare opportunities to catch errors in formal
specifications, which would not be flagged by the verifier. However, verification increases the
burden of reviewing, as each review requires looking at changes in specifications, implementations,
and also at the code generated via transpilation into the executable target language. Interestingly, we
find that during review formal-first developers tend to focus on the specifications while engineering-
first developers focus on the code that will actually be executed. We find that engineering-first
developers particularly value the fact that verifiers enhance coding agility by precisely automating
change impact analysis, hence enabling aggressive code optimizations without fear of breaking
functionality.

3. Opportunities for Improving Verified Software Engineering (§ 8) Our third contribution
answers RQ3 by identifying several concrete opportunities from the interviews, for streamlining
verified software engineering, by simplifying the processes of specification and proof, and tight-
ening the integration with the other phases of the software development lifecycle. These include

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 403. Publication date: October 2025.

On the Impact of Formal Verification on Software Development 403:3

o method applyDiscount (x : real, percent : real) returns (res : real)
1 requires 0.0 < x
requires 0.0 < percent

N}

3 requires percent < 100.0

4 ensures 0.0 < res

5 // Example of MISSING POSTCONDITIONS

6 // ensures (0.0 < x = res < x) V (percent = 0.0)
7 {

8 var factor := percent / 100.0;

9 assert 0.0 < factor < 1.0;

10 // MISSING HINT

11 // assert x < 0.0 A factor < 0.0 = 0.0 < x x factor;
12 res := x *x factor;

13 3

Error: a postcondition could not be proved on this return path
Could not prove: 0.0 < res

Fig. 1. Example of a failing Dafny method with missing assertion and preconditions, reported by P9

conducting empirical studies that identify what constitutes clean proofs that are robust to solver
changes and codifying them in style guides and linters; improving the interactivity of the verifier
by providing an experience similar to that of the GNU Project Debugger (GDB), finding ways to
automatically generate distinct review artifacts for specifications, proofs, and executed code; and
finding ways to more seamlessly integrate tests and formal specifications, or even use unit testing
as a proxy for proof.

Together, our study is the first of which we are aware that uses interviews with experts to
understand the impact of automated verifiers on real-world software engineering projects. Some of
our findings resonate with anecdotal evidence from blog posts [Tomb 2023], talks [Rungta 2024],
and case-studies [Faria and Abreu 2023]. However, by systematizing this expert (“folk”) knowledge,
we hope to enable readers to exploit this knowledge to improve their own software engineering
with verification, and to devise the new algorithms, techniques, and tools needed to make formal
verification more commonplace in software development.

2 Background
We assume in this paper, a basic familiarity with auto-active verifiers like Dafny [Leino 2010].

Contracts and Verification Conditions As a brief refresher, consider the code in fig. 1, which
shows a method that takes two inputs x and percent and returns an output res. The method’s
contract has a pre-condition specified by the requires clause, which says that the input x must
be non-negative, and that the input percent must be between 0 and 100. The method’s contract
also has a post-condition specified by the ensures clause, which states that the output res is non-
negative. Dafny uses the specification and the implementation to generate a verification condition
(VC): a logical formula whose validity implies that the implementation satisfies its contract.

Auto-Active-Proof: Assertions, Hints and Lemmas While the SMT solver can prove many VCs
(valid), more complex programs or specifications yield VCs that are outside the decidable theories
implemented by the solver. For example, even the VC from fig. 1 uses a non-linear arithmetic,
arising from the multiplication in the method body. When this happens, sometimes the SMT solver’s
heuristics suffice, but often, the developer has to provide an explicit hint in the form of an assert

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 403. Publication date: October 2025.

403:4 Eric Mugnier, Yuanyuan Zhou, Ranjit Jhala, and Michael Coblenz

Gender Age Occupation Degree Experience Software verified #LOC
P1 F 25-34 Student > MS < 1year Distributed systems >500
P2 F 25-34 Student > MS 8-10 years Compilers, distributed systems >10,000
P3 M 25-34 Student BS 4 years Mathematical proof >1000
P4 M 34-45 Computer Scientist > MS > 10 years Security critical >1000
P5 M 25-34 Student > MS 5-7 years Cloud >1000
P6 M 34-45 Computer Scientist > MS > 10 years Security critical >20,000
P7 M 45-54 Software Engineer > MS > 10 years Authorization >5000
P8 M 25-34 Professor > MS 5 years Distributed systems >1000
PO M 34-45 Computer Scientist > MS > 10 years Business critical >1000
P10 M 25-34 Professor > MS 2 years File system >10,000
P11 M 45-54 Computer Scientist > MS > 10 years Storage system >10,000
P12 M 54-64 Software Engineer BS > 10 years Cryptography >10,000
P13 M 45-54 Software Engineer BS > 10 years Cryptography >10,000
P14 M 45-54 Software Engineer > MS > 10 years Blockchain >10,000

Table 1. Participants’ backgrounds

statement (shown as a comment) that encodes the relevant mathematical fact as part of the VC.
Sometimes, these mathematical facts are over recursively defined functions, must themselves be
proved via separately defined recursive (inductive) functions which effectively act as lemmas, which
may then be used to prove a given VC by appropriately invoking the lemma in an assert. Hence,
Dafny, and related tools are often referred to as auto-active verifiers, to distinguish them from fully
interactive verifiers like Rocq or Lean which do not use SMT automation.

3 Method

Participants We recruited 14 participants through referrals by Dafny maintainers, personal
contacts, and snowball sampling. The main inclusion criterion was that the participants had worked
on a large Dafny project that exceeded 500 lines of code. We stopped recruiting once the last few
participants began repeating key ideas, which occurred after 14 interviews. Although we may not
have reached idealized theoretical saturation at all levels, we are confident that the concepts that
emerged capture the key concerns of all the participants. Additionally, this number is consistent
with prior work, which found that saturation is typically achieved within about 12 interviews [Guest
et al. 2006]. These 14 participants have a variety of backgrounds, as summarized in table 1. We
labeled them from P1 to P14 in the order of their interviews. Two of the participants were students,
four were computer scientists, four were software engineers, and two were professors. Their
experience ranged from under one to more than ten years, although most of them were relatively
senior, with 10 participants having at least four years of experience. The projects they worked on
varied in size, from less than 1000 lines of code to more than 10,000 lines of code, covering a variety
of domains.

Interview protocol We conducted interviews from September 2024 to March 2025 in a semi-
structured format, using a predefined set of questions while allowing the conversation to flow
naturally. We grouped the questions into four categories following the software development
lifecycle —planning, design, implementation, and review/testing/maintenance. We also asked the
participants about their background and their projects. The interviews lasted about an hour and
were conducted over Zoom, except for the first two, which were held in person. Conversations were
recorded and transcribed automatically using Zoom. The protocol was approved by our university’s
Institutional Review Board (IRB), and we obtained informed consent from our participants. To

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 403. Publication date: October 2025.

On the Impact of Formal Verification on Software Development 403:5

protect participants’ identities, we report only anonymous identifiers, such as P1, not their names.
Participants could also skip questions whose answers could reveal sensitive information.

Analysis To analyze our interview transcripts, we used a constructivist grounded theory ap-
proach [Charmaz 2014]. Our method consisted of three main steps:

(1) Paraphrasing each relevant sentence of the transcript using gerunds. This resulted in 1081
segments.

(2) Extracting low-level codes from the paraphrased content, yielding 325 codes.

(3) Exploring relationships between codes primarily through diagrams. From these relationships,
we identified six key categories — learning curve, specification and proof technique, proof
brittleness, assurance techniques, integration with software development, code changes.

Although this resembles axial coding, our process relied more on visually mapping connections,
often before writing memos, to document our ideas and observations about participants, as advised
by Charmaz [2014]. Diagrams proved to be the most practical technique for extracting meaning
from the data.

Threats to Validity Our study presents a snapshot of the field at the time of our interviews, but it
may not capture all perspectives. None of our participants were complete Dafny novices, such as
undergrad students, and we were constrained by the size of the Dafny community, which lacks
diversity—for example, we were only able to recruit two women. Additionally, while we believe
that most of our findings are generalizable to other automated verifiers such as Verus or Fstar, our
participants mainly discussed their Dafny experience, which may not be entirely transferable.

As verification researchers, our knowledge of the field influenced how we conducted the in-
terviews and analyzed the data. In fact, this study was motivated by observations of Dafny’s
use in industry. With backgrounds in programming languages, systems, and verifiers, we saw an
opportunity to study its use in practice. We believe that the challenges observed on large-scale
projects are not yet well understood. People with different backgrounds might have had a different
perspective. For example, a sociological perspective might have revealed more findings on the
collaborative approaches taken by the participants. All the coding was performed by the first author,
but techniques such as memoing helped mitigate bias [McDonald et al. 2019]. Additionally, using a
systematic grounded theory approach helped reveal our biases and limit their impact.

Finally, the interview process could also be a limitation. Interviews do not necessarily reflect
reality, but rather the participants’ personal experience. Moreover, confidentiality constraints may
have restricted what participants could disclose, potentially omitting relevant insights.

4 Results: Impact of Verification on Development

First, we present our results on how formal verification affects the phase of building software. First,
the specification phase is significantly impacted, as the informal requirements of classical software
engineering are now augmented with formal artifacts that describe what the code should do (§ 4.1).
Second, the use of verifiers significantly changes the implementation phase because now, in addition
writing the code that runs, engineers must also write auxiliary assertions and lemmas that are
needed to help the verifier formally establish that the code meets its specification (§ 4.2). Third, the
notion of debugging is also transformed as a significant effort goes into understanding why the
verifier fails to prove that the code meets its specification and to then determine the appropriate
hints to provide to the verifier to help it succeed (§ 4.3). Finally, we find that verifiers that make
extensive use of brittle SMT solver heuristics to automate verification, add a new phase to the
process of building software: that of hardening the code so that the proofs continue to hold even as
the specific solver heuristics might change across future versions (§ 4.4).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 403. Publication date: October 2025.

403:6 Eric Mugnier, Yuanyuan Zhou, Ranjit Jhala, and Michael Coblenz

4.1 Specification

“Whenever you pick a language to write the pseudocode in, it starts to shape your idea of
what the implementation is.” — P13

Developers report that verifiers influence when they write specifications, what sources they
use to derive specifications, and how they actually write the specifications to minimize risks of
unsoundness and simplify the downstream verification.

When to Specify

Participants report writing the specification at different stages of the development, depending on the
risks they want to mitigate. Participants P12 and P13 develop the specification and implementation
concurrently. This approach minimizes the cost as they can iterate between the two to incorporate
missing details from the code into the specification or inversely. Some participants, like P5, P7, and
P11, start with the specification to ensure the design makes sense. Specifying first allows to “get a
better understanding of the code” (P7) and minimize the risk of writing an incorrect implementation
by stating its invariants first. Finally, P6 and P9 begin by writing a working implementation in Dafny
before attempting to prove it. Their goal is to have a working proof of concept that can be tested
on real data before focusing on verification. Using this method, they can showcase the feasibility of
the project quickly and secure their peers’ support.

What to Specify

To write specifications, participants used different sources of data: — documentation, design docu-
ments, tests, and code — to determine the important properties of their system. Each of these sources
provides partial information, and so developers choose to combine them to get a complete picture
of the overall specification.

Specifications from Documentation P5 reports extracting specifications from documentation:
“You can look at the documentation, and you can guess things are semi formalized, like sentences that
are written in natural language, but that describes mathematical proprieties like boolean properties.”
However, documentation is often incomplete and vague, which introduces the risk of writing a
specification that is too weak or potentially incorrect. To prevent the latter, P12 and P13 write an
informal specification first, using RFC 2119 [Bradner 1997] semantics, with keywords such as MAY
and MUST. This informal specification, inspired from their design document deliberately avoids
pseudocode or reference to any elements of the code, as, participant P13 noted: “Whenever you
pick a language to write the pseudocode in, it starts to shape your idea of what the implementation
is, and you start to make assumptions.”

To connect their specification with the code, P12 and P13 use Duvet [AWS Labs 2025], which
inserts requirements text as comments in corresponding code sections. Developers then translate
these informal specifications into Dafny contracts, as illustrated in the simplified example given
by P13 shown in fig. 2. This example includes (1) a comment that is extracted by Duvet from
the informal specification aws-kms-keyring.md (lines 2-4) and (2) a Dafny post-condition with the
ensures keyword (lines 5-7). The latter is the developer’s formalization of the natural language
comment: if the input contains a plaintext data key, then the encryption context must be successful.
P13 explained that this structured process has been highly effective: “the person who’s writing the
design [now has] a mechanism to make sure the person who’s writing [the code] does what they
want — give them some evidence that it’s correct” This process avoids imprecision from natural
language documentation, as every property is linked to an RFC-style statement. However, the
process is costly to design and maintain since it introduces another layer of translation.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 403. Publication date: October 2025.

On the Impact of Formal Verification on Software Development 403:7

Specifications from Tests Some participants derive specifications from existing tests. For example,
P6 described their method as “generalizing the tests which exist into theorems.” The benefit of this
method is that the tests provide a good sense of what should be true or not about each part of
the system. The challenge with this approach is that these tests “are obviously like specific points
within that space” meaning they must find a specification that covers “all the inputs.”

Specifications from Code P5 studies the code: “it gives you a lot of implementation details,” which
are not always tested or documented, such as “what kind of error is sent when you have this thing
that is invalid?” However, reading the code to infer the specification is often a tiresome task, that P4
described as: “extremely time-consuming to [...] stare at the Java and try to figure out the abstract
properties” In other words, it is not always clear what the code is doing, and hence, even less what
properties should hold about it. To address this, P4 resorted to ignoring details that are not pertinent
to the specification, stating that “many implementation details in the middle were irrelevant.”

How to Specify

Developers described using two main strategies to simplify formal verification: writing purely
functional specifications that minimize reasoning about imperative updates, and then further
abstracting the specifications to focus the aspects germane to downstream proof.

Pure (Functional) Specifications Participants often reported using functional function specifi-
cations that describe the behavior of imperative me thod implementations, as this eases verification
by providing a pure (side-effect free) representation of the implementation. Verifiers have an easier
time with functional code as it maps more directly to the logical representations needed for formal
verification. It also enables equational reasoning while eliminating the need for complex frame con-
ditions that specify what may change in the program state, the need to track aliasing relationships,
and complex control-flow. The effectiveness of this strategy of writing pure functional specifications
is well-established in the research literature [Hawblitzel et al. 2015; Klein et al. 2009; Leroy 2006].

P5, P7, P8, P10, and P11 reported using functional specifications to describe properties of imper-
ative methods, allowing the use of local, compositional and equational or algebraic reasoning to
prove properties of the implementation. Figure 3 shows an example extracted from a participant’s
project. The method UpperBoundedAdditionImpl implements the addition of two bounded
integers, x and y, with an upper bound u. In the ensures clause, the method specifies that the
result sum must be equal to the result of the function specification UpperBoundedAddition.
UpperBoundedAddition is a pure function that takes two unbounded integers x and y and an
upper bound u and returns the sum of x and y if it is less than or equal to u; otherwise, it returns the

o //= aws-encryption-sdk-specification/framework/aws-kms/aws-kms-
keyring.md#onencrypt
//= type=implication

A KMS.IsValid_PlaintextType(input.materials.plaintextDataKey.value)
A @ < |client.History.Encrypt|

1

2 //# If the input [encryption materials](../structures.md#encryption-
3 //# materials) do contain a plaintext data key, OnEncrypt MUST

4+ //# attempt to encrypt the plaintext data key

5 ensures

6 A input.materials.plaintextDataKey.Some?

7 =

8

9

Fig. 2. Simplified example of an informal Duvet specification manually translated into Dafny.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 403. Publication date: October 2025.

403:8 Eric Mugnier, Yuanyuan Zhou, Ranjit Jhala, and Michael Coblenz

o method UpperBoundedAdditionImpl (x:uint64, y:uint64, u:uint64) returns
(sum: uint64)

1 ensures sum as int = UpperBoundedAddition(x as int, y as int,
UpperBoundFinite(u as int));

2 {

3 ify 2u{

4 sum := u;

5 } else if x 2 u -y {
6 sum := u;

7 } else {

8 sum := X + y;

9 }

10}

o function UpperBoundedAddition(x:int, y:int, u:UpperBound): int
{

// LeqUpperBound checks if a given integer x

// is less than or equal to the specified upper bound u.

if LeqUpperBound(x + y, u) then x + y else u.n

I3 T ST R

Fig. 3. Example functional specification of an imperative method [Iro 2015]

upper bound u. The main differences between the implementation and the specification are (1) the
types: the implementation uses uint64 while the specification uses int and (2) the control flow:
the implementation has multiple assignments to sum while the specification is a single expression.

These differences align with observations made by P4 and P5 regarding functional code. As the
former highlights, functional code “makes state updates explicit” by reifying such updates as named
values in the code which simplifies the subsequent verification as “Dafny has a significantly easier
time proving things about functional code.” P5 further emphasizes that “your specification needs to
be pure,” arguing that purity inherently improves design by making side effects explicit. In this case,
UpperBoundedAddition being a pure function simplifies verification by removing the need for
Dafny to reason about the intermediate (implicit) state changes of the imperative implementation.

Of course, one might wonder why the developers did not write the implementation in a functional
style in the first place. The reason is that the imperative version is more computationally efficient:
it short-circuits as soon as it finds a satisfying condition, avoiding computing the sum of x and y
when unnecessary. Thus, we found developers write functional specifications to get a clear, concise,
and verification friendly representations of efficient-to-execute imperative implementations.

Abstracting Specifications While a functional specification is easier to verify, its explicit nature
can still bog down downstream verification with irrelevant information. Developers address this
problem by abstracting the specifications to only expose properties that are relevant for verification.
To illustrate the complexity of specifying imperative code, P8 referenced a paper showcasing the
powers of Dafny [Leino 2008]. They described a simple method for adding an element to a singly
linked list, which involves just a few lines of code. Yet, verifying that this method is correct required
substantial effort as it requires “proving that you know that no pointers are pointing anywhere
that you don’t want them to be pointing. And it just takes a lot of work to say exactly where you
want them to be pointing to.” P11 explained that this verbosity can have negative consequences on
the soundness of the specification, especially when the functional specification is similar to the

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 403. Publication date: October 2025.

On the Impact of Formal Verification on Software Development 403:9

implementation “because you're just as likely to have a bug in your specification as you are in your
implementation”

To improve clarity, P11 described using different levels of abstraction. First, they write a functional
specification equivalent to the implementation, similar to the one described in Figure 3, where
implementation types like vectors and hash maps are replaced by logical sequences and maps, to
simplify reasoning. Second, they introduce another layer that “hides the details of the algorithm and
exposes an interface” This separation, they noted is “valuable for verifying different components
of your system independently of each other”. Finally, as P7 mentioned, they define main theorems
under the form of Dafny predicate, which are pure mathematical functions that return a boolean
value, to “capture” the global invariants of the code. This approach encapsulates the low-level
details of the implementation and summarizes the “theorem [...] in half a page of text”.

4.2 Proof Development
“In Dafny, very, very little goes through with literally zero proof” — P10

Eleven of our 14 participants agreed that a proof checked by the tool was the only acceptable
outcome of a verification effort. They enforced this standard to “only commit verified code” (P5).
The remaining participants reported to sometimes trusting their implementation for proofs that
are too demanding, given something they know to be correct.

The effort of ensuring “correctness all the time” (P10) is a result of the cost and the expectation
put into verification. As P11 explained: “If you’re going to put in the effort of proving, you might
as well get the benefits of the proof, which is that you don’t have to worry about software bugs.”
P5 confirmed that justifying the effort of verification through guarantees is essential to convince
leaders and stakeholders to invest in the process.

While Dafny and similar auto-active verifiers use SMT solvers to automatically discharge many
proof obligations, the developer must still spend substantial effort writing proofs of properties that
lie outside the solver’s capabilities. Indeed, previous work [Hawblitzel et al. 2015] shows that the
number of lines of proof code can be 10x the number of lines of implementation code. Thus, we
sought to study how verification affected the actual coding practices of our participants, to identify
what techniques and approaches they use when developing proofs.

Regarding when to write proofs, participants described two techniques: (1) only verified code
should be committed to version control; (2) proofs can be developed gradually, using assumptions
as temporary placeholders in lieu of full proofs; Regarding how to write proofs, we found two
approaches: (1) structuring proofs in a top-down fashion, starting with the top-level theorems, and
then forking off the obligations needed to prove those theorems as helper lemmas, that are then
assumed and then subsequently proved, perhaps using more lemmas, recursively; (2) structuring
proofs in a bottom-up fashion by building up a library of proved lemmas, using those to prove more
complex lemmas, until finally, the top-level theorem is proved.

Gradual Proof Due to the upfront cost of verification and the need to produce quick results, all
participants reported using an incremental verification approach. P3 explained: “Dafny is very nice
for this incremental development, you can just make a lemma pass with some, assert false, and
see ‘Oh, with this assumption, can I make these things true?’ ” Using this method, Dafny allows
users to build their proofs step by step in the same way interactive proof assistants allow skipping
goals via admit or sorry. Participant P11 wished Dafny would go further with a hybrid approach
that would allow fuzzing or model checking the specification against the implementation to avoid
fruitless proof effort when the implementation is not a refinement [Wirth 1971] of the specification.

Some participants felt that sometimes formal proof was unnecessary, and testing was sufficient.
For example, P12 said “For most code, writing a dozen tests is actually going to test every interesting

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 403. Publication date: October 2025.

403:10 Eric Mugnier, Yuanyuan Zhou, Ranjit Jhala, and Michael Coblenz

code path and so proving it for all possible inputs doesn’t actually get your code any more correct
because it was already correct” Consequently, P12 and P13 reported not writing contracts at all, and
skipping verifying well-tested or relatively straight forward functions. Of course, the participants
noted that it is not always possible to bypass verification effort as Dafny forces you to write certain
annotations to make the code compile. For example, in some situations not covered by Dafny’s
built-in heuristics, the developer must specify a decreases clause to convince Dafny that a piece
of looping or recursive code terminates.

While such gradual techniques is essential to verified development, they can blur the distinction
between verified and unverified code, so developers have to take care to understand which bits of
code are verified and which are not.

Top-down Proof Participants P1, P3, P5, and P6, reported using a “top-down” approach, starting
by proving the main theorem before proving the necessary lemmas. They deferred, as unproved
assumptions, proofs of any secondary propositions (sub-goals) needed to prove the top-level goals.
Often the decomposition into sub-goals is relatively straightforward as it often reflects the structure
of the code. As P6 explained: “For each of the properties, there’s a main lemma and, generally, the
structure of the code means that these get split down into auxiliary lemmas about different parts of
the code which are easy to combine.” This connection between the code and the proof structure
was echoed by P5, P10 and P13, with P5 describing it as “almost a compositional proof starting
from the specification” This technique, however, suffers from the exclusion of low-level details that
might impact the proof but which are only discovered when trying to prove some very low-level
lemma at the “bottom” of the proof dependency graph, and which could then invalidate the entire
preceding proof effort.

Bottom-up Proof To avoid such unpleasant surprises, P10 uniquely reported using a “bottom-up”
approach where they started with self-contained low-level lemmas that were then incrementally
used to build up to the overall top-level theorem, thereby minimizing the risk of barking up the
wrong (proof) tree. However, P10 acknowledged that this approach only works for them as they
know the main proof goal, “[Having] an idea of the whole design going in [makes it] a lot less
likely that [I] verify something useless” Indeed, P10 notes this approach does not work for all
projects, for instance “when it’s more experimental, this [...] tends to waste time”, as this localized,
bottom-up approach can lead to proving lemmas not needed by the top-level proof.

Several participants reported using a hybrid of the top-down and bottom-up approaches as a
middle ground. For example, P4 and P5 stated that when they knew the main theorem, and have
some idea of what the implementation should be, they start top-down and then switch to bottom-up
if needed. This helps, as P4 explains to “sanity check my backwards work by working forward a
little bit, and seeing how far apart things are from meeting in the middle”

4.3 Proof debugging
“Who’s wrong, you or Dafny?” — P6

In addition to the debugging process that arises in regular software development, auto-active
verification introduces a new debugging phase: the developer must understand and fix their proof
when it is rejected by the verifier. Proof debugging is particularly challenging because it requires the
developer to determine whether the is code rejected (1) because the desired property does not hold,
or (2) because Dafny simply cannot prove it. In the first case, the main reason for a proof failure is a
mismatch between the contract and the code, as reported by six participants, and described in § 4.1.
In the second case, users referred to “Dafny being wrong” as the verifier failing to prove a true
statement without hints. (Note that while Dafny can be wrong due to unsoundness issues, only
one user reported encountering such a case in our study.) Next, we illustrate the nature of the proof

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 403. Publication date: October 2025.

On the Impact of Formal Verification on Software Development 403:11

debugging problem with an example, and describe how developers tackle it via a combination of
attempting to passively interpret the verifier’s error message, actively probe the verifier’s internal
state by adding assertions to the code, and adding assumptions to narrow the cause of the failure.

The Proof Debugging Problem Figure 1 shows an example from P9 that illustrates the challenge
of proof debugging. The method applyDiscount calculates the percentage percent of a given
number x. In this case, the author wanted to prove that, given a non-negative number x and a
valid positive percentage percent, the result res is also non-negative. However, when trying to
verify this method, Dafny gives an error message indicating that it cannot prove the postcondition
0.0 < res without explaining why. Now the developer has to determine whether (1) the code
fails the postcondition, or (2) the verifier fails to prove the postcondition owing to some limitation
of Dafny or the SMT solver, and if so, what hint would enable successful proof.

Interpreting Error Messages The first challenge of the debugging process is that of understanding
what brought up an error message. P9 described the feelings of another inexperienced user when
reading the error message from fig. 1: “The thing just tells you I can’t prove that 0.1 * 0.1 is greater
than 0 without any further explanation. Everyone will think that thing is [stupid]... They will think
like this called an LLM or something. But the thing is that it’s supposed to be good at math. You
have to give a better error message.” Other users echoed this frustration. P2 described the output
as “spits out a no”; P3 called it “black box thing” and P7 remarked that it provides “no help.” In
fact, while the error message gives you the location of the problem—the path, along which the
postcondition could not be proved—it does not explain why the proof failed. Expanding on this, P12
confessed to being lost when it came to identifying what information was wrong or missing: “How
do I know which of the 1,000 things involved in that assert are what [Dafny is] having a problem
with?” They also wished that Dafny could surface more information to the developer: “Down in
the depths of Boogie (an intermediate verifier used by Dafny), it probably knows and there should
be some way to percolate that back up.” This frustration aligns with reports from P1, a beginner in
Dafny, who suggested that the unclear error messages, on top of creating misunderstanding, can
also lead to mistrust in the tool.

Actively Probing via Assertions as Breakpoints One standard method to debug proof errors like
that in fig. 1 is to add intermediate assertions that help to the developer build a mental model of
what the verifier can and cannot prove, which then, ultimately, helps them identify hints that can
provide the information needed to complete the proof. P9 explained that the inexperienced user
added assertions on line 6 as they thought the problem was about inferring the value of factor.
However, the real problem was that the verification goal here involved non-linear arithmetic, which
is undecidable in general. In this instance, the SMT solver did not recognize that multiplying two
non-negative numbers always results in a non-negative product. Once this fact was provided as a
hint — an explicit assertion on line 8 — Dafny was able to prove the assertion and the postcondition,
removing the error message. This strategy of adding intermediate assertions or loop invariants
is used by all participants to debug proofs as P10 noted, “in Dafny, very, very little goes through
with literally zero proof” P12 described their approach: “sprinkle in a bunch of assert statements to
see what the actual problem is” — a method similar to adding breakpoints to inspect the machine
state during regular debugging. P6 talked about a more methodical approach of “asserting the post
conditions at every exit point”

Narrowing Failure Causes via Branches and Assumes Another strategy, in the spirit of the
top-down proof decomposition approach, was described by P10 as “breaking down” the proof by
adding conditionals, splitting it into cases to precisely understand in which scenarios the proof
fails. Building on this, P12 also reported using assume statements to identify missing facts “you
might assume [...] something you know is true [...] if that fixes your problem, then you [...] need

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 403. Publication date: October 2025.

403:12 Eric Mugnier, Yuanyuan Zhou, Ranjit Jhala, and Michael Coblenz

alemma” (to prove that the assume proposition is indeed true.) Summarizing this experience, P10
described it as “how to get better, more error messages out of the tool”

Challenge: Building a Mental Model of Implicit Verifier State While these strategies are
effective, the example in fig. 1 illustrates that even if the user is broadly familiar with the techniques
to debug proofs, they may not be able to explicate the missing facts; they added an assertion but
were not able to identify the one that was needed. To confirm this, both professors in our study
(P10 and P8) reported that ultimately, the difficulty lies in building a mental model of the internal
verifier state — i.e. of what Dafny “knows” at any point in the proof — as Dafny’s error message
only tells you what fails but not why it fails.

P10 and P8 compared the implicit proof context — slowly made visible via the addition of
assertions — to the explicit proof state of interactive provers like Isabelle, Rocq or Lean, which
display to the user all the facts that are “known” to the verifier at any point in the proof. While
they acknowledge that both auto-active and inter-active tools can do similar things, P8 pointed
out the challenge of Dafny’s hidden verifier state was that “users basically have to have a perfect
model of the Dafny proof context in their head in order to understand what’s going on” One way
users can clarify the context is by adding annotations that make the state explicit. However, this
can sometimes require an overwhelming number of annotations: P8 recalled once requiring “some
intermediate point [...] with 50 assertions”. To alleviate this, users need to use their intuition and
experience to decide which assertions to add, as enumerating everything is impossible due to the
numerous cases or facts to consider. Ultimately, as P3 noted, proof debugging remains a complex
challenge: “There is still [a gap] between the things that are intuitive for people, and that are
intuitive for a computer”, suggesting that tools and techniques that help bridge this gap will have a
significant impact on the usability of auto-active verifiers.

4.4 Proof hardening

“There’s something soul crushing about having to go back to things that you thought were
done, and do them again.” — P7

A key strength of auto-active verifiers like Dafny relative to interactive ones like Rocq or Lean is
their ability to automatically discharge proof obligations by relying upon SMT solvers. However,
this automation comes at a cost: the proof obligations — such as the one from fig. 1 — often involve
reasoning outside of decidable theories, and hence, rely on brittle SMT solver heuristics that can
sometimes fail. Thus, verified software development has to include a new phase: proof hardening,
where the developer modifies or alters their code and proofs so that verification remains robust in
the face of subsequent changes to the SMT solver’s heuristics or the surrounding context. Next, we
illustrate the nature and extent of the proof brittleness problem, identify various sources of brittleness,
and describe the common hardening strategies that developers use to address brittleness.

The Proof Brittleness Problem A brittle proof is a previously verified proof where trivial, unrelated
changes can cause the proof to fail. This unpredictability was illustrated by P7, who explained
introducing “some little fiddly change to the code, just maybe pass one more element in the state
[...] and all the proofs would just stop working.” Not only do small code modifications trigger
failure, but P7, P10, P11, and P13 also reported that updating Dafny, changing the underlying Z3
solver, or even verifying on a different machine could break a brittle proof. While these issues were
revealed by minor changes, their fixes were a major enterprise and major setbacks. Failures like
these, where as P8 says, the verifier “goes off the deep end,” were described as something that “bites
you” by P5, as a “major roadblock” by P10, and ultimately, as inducing “existential dread” and “soul
crushing” by P7.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 403. Publication date: October 2025.

On the Impact of Formal Verification on Software Development 403:13

We observed three categories of experience with proof brittleness. P1, P3, and P9 had not
encountered brittle proofs, likely because their proofs were simple. Others reactively addressed
brittleness issues. P10 explained “we would increase our [resource] limit on random functions,
just to get things through expediently” Finally, some were highly impacted by brittleness and
proactively addressed brittleness. P5, P6 and P7 faced significant delays, and P6 explaining that
they performed “major refactoring” that took a month. As a result, P11 prioritized fixing brittle
proofs above all else: “If you ever get a timeout, stop what you’re doing. Don’t just try to paper it
over [...] and hide it, but actually [...] figure out why you have it and get rid of it”

Identifying Sources of brittleness

Participant P7 explained that the root cause of brittleness is an over-reliance on Dafny’s automation:
“[Dafny] encourages you to get into [...] the worst possible shape in a production project where
[...] under the hood the complexity of what Z3 [can do] is at the limits of its ability.” Major sources
of brittleness included contexts, quantifiers, and frame conditions.

Contexts, Quantifiers Brittleness, according to P8, P7, and P5, is exacerbated by large proof
contexts, which can result in gigabytes of queries sent to the solver. This overwhelming proof
context size, P5 explained, arises from Dafny including “useless assertions” and “recursive function
unrolling” both of which can unnecessarily increase the context size. Such large queries hinder
debuggability and trust: “if the proof [...] requires five times the knowledge of humanity [...] 'm
sorry, but you need to find a better argument [than the proof]” (P5). Despite this, P5, P7, and P8
reported that the solver sometimes lacked critical information that could simplify the proofs.

Quantifiers and Frame Conditions The amount of information was not the only challenge. P10
also cited quantifiers as a source for proof complexity [Zhou et al. 2023]. P6, P7, P8 and P10 identified
frame conditions — which prove that an object remains valid after modification — as another source
of which they “have no control” (P7). Beyond individual sources of complexity, P7 and P10 observed
a broader trend: the sizes of the proof contexts increased as they moved higher in the proof tree,
i.e., as they proved higher-level properties using lower-level lemmas. This scaling issue led them to
question the feasibility of larger proofs, with P10 remarking “if my project was twice as big, 'm
not confident that things would work.” This observation is counterintuitive as Dafny is a modular
verifier where each function is checked in isolation, at, one might expect, roughly the same cost,
regardless of where the function was in the call-graph. Indeed, one might expect higher-level proofs
to be more abstract and therefore less complex. However, practical experience shows otherwise:
the complexity of specifications frame conditions, and function definition unrolling snowballs as
we go up the proof tree, making the proof-contexts ever larger and obligations harder to discharge.

Proof Hardening Strategies

Participants reported three main strategies to mitigate proof complexity: monitoring, adding hints,
and changing the visibility of proof facts.

Resource Monitoring P5, P6, P7, P8, and P10 monitored the solver’s resource count—an indicator
incremented based on the number of solver operations used— to track the proof complexity. While,
P5,P7 and P10 set a low resource count to make the proof fail if the limit was exceeded, no participant
reported a reliable method for determining this limit. In fact, P7 and P10 reported having to increase
the limit over time. This contradicts the intended goal of strict limits. P7 described their approach
as “pushing left” by establishing a limit early to avoid major rework later, yet ultimately adjusting
it as the proof grew.

Adding Hint Assertions P3, P5, P6, P7, P8, and P10 reported adding assertions as “hints” to help
the solver. These assertions are not mandatory, but as P7 noted, they can reduce the proof time

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 403. Publication date: October 2025.

403:14 Eric Mugnier, Yuanyuan Zhou, Ranjit Jhala, and Michael Coblenz

from “a ton of time” to “immediate” as they can significantly reduce the space of terms where
quantifiers are instantiated. Meanwhile, P5 and P10 mentioned removing assertions to minimize
the context. To understand where to remove or add these assertions, P10 did so iteratively, while
P5 used the unsat core functionality provided by Dafny. P13 reported using assert false to
identify where changes are needed: if adding assert false (which skips part of proof) reduces
the proof time significantly, then the skipped part is responsible for the complexity.

Controlling Visibility Eight participants optimized the visibility of proof facts, ensuring that
only relevant information was available to the solver. To do so, P1, P3, P6, and P10 further refined
the proof by breaking it up into smaller lemmas to simplify goals and reduce the context size.
Additionally, P4, P5, P6, P7, P8, and P10 used a combination of opaque and reveal to hide or show
elements in the proof context, especially for transparent functions. Participant P13 wished opaque
was the default, as it would require fewer annotations (only when additional context is needed).

In contrast with the top-down approach to proof development (§ 4.2), P7 described doing most
of these optimizations in a bottom-up fashion. P4 explained that a top-down approach makes proof
optimization difficult: “it’s also a dangerous path, because the prover can take five or ten seconds
to prove something” (which is slow for an interactive experience).

Style Guides: Towards A Discipline of Proof Hardening To systematically mitigate against
brittleness, P6, P7, P11, and P13 adopted structured approaches, including style guides, which aim
to reduce automation—and hence the instability due to automation heuristics—as much as possible.
For example, P5 advocated for minimal automation by saying “I want Dafny to be as stupid as
possible and not help me at all [...]. Make me be really verbose, but [...] make sure the proofs are
easy for [Dafny]” Another reported that they “don’t play that game [...] if 'm needing to bump the
resource count up, I break it down,” meaning they divide the proof into smaller lemmas instead of
increasing the resource count to automatically verify a large proof. To enforce this principle, they
reported using the isolate-assertion flag to prove every assertion individually (rather than the
default behavior of Dafny, which sends batches of assertions to the solver).

Happily, while brittleness was unanimously acknowledged as a major issue, participants noted
that Dafny has improved over time, offering better automation, more visibility features, and
clearer guidelines on mitigating the problem [Ver 2023]. As prescribed in these guidelines, several
participants noted that brittleness is solvable when they “engineer their proof” appropriately. One
participant remarked that “it’s just kind of having discipline in the same way, like writing C++
code, you say you can’t use these seven features, and you might have to write more code. They
can’t use templates or something, but they still kind of know what to do”

5 Results: Impact of Verification on Assurance Methods

In this section, we describe how formal verification affects the subsequent deployment of software.
First, we show how verification influences testing by on the one hand, removing the need to exhaus-
tively test implementations, but instead shifting some of that effort to testing formal specifications
themselves (§ 5.1). Second, we demonstrate how verification impacts code review, again by moving
effort to reviewing specifications (not proofs), and the transpiled code generated in various target
languages from the (verified) Dafny sources (§ 5.2). Third, we consider how the verified code is
packaged as libraries that can then be used by clients in production, and the constraints that such
clients place on the verified development process itself (§ 6). Finally, we consider how verification
impacts the long term maintenance of software, by enabling formal analysis to delimit the impact
of changes, and thus, fearless optimization (§ 7).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 403. Publication date: October 2025.

On the Impact of Formal Verification on Software Development 403:15

5.1 Testing
“You really want to check that your spec is right, and one way to do that is testing. ” — P7

Verification and testing are often seen as “orthogonal” (P7), and in the extreme, the former might
be viewed as a replacement for the latter, as formal verification is a way to “test comprehensively
[...] on all inputs” (P5). However, in practice, all participants that have engineered substantial
verified software reported that they have used some form of testing along with verification. Six
participants reported using testing as a way to compare the specification to some implementation or
expected behavior. Thus, to understand how developers test their specifications, we first describe
the two main goals of verification, and hence, testing, and then, the different techniques used to test
during verified software development.

Goals

We identified three kinds of testing goals pursued by participants. Some focused on verified specifi-
cations; their projects aimed to build a reference model of the deployed code, to formally establish
desired properties of that model, and to then compare the behaviors of the deployed code (which
is not verified per se), to the reference model. Others pursued verified implementations, aiming to
formally verify various properties of the code that will actually be used in production to replace
a legacy implementation. Here, the main testing requirement was to make sure that this verified
implementation did not differ from the legacy (unverified) one. If any discrepancies arose, they
needed to change the specification and implementation, ensuring that the verified code had the
same behavior as the legacy implementation. Finally, six participants were focused on verifying new
implementations of new specifications, which did not have any legacy compatibility requirements.

Testing Goals Compatibility is a common requirement. Most participants used testing to prevent
the unpleasant surprises that occurred in the past where, per P7, “the [verified code] was wrong
compared to the running code” However, the testing goals depended on the goals of the project.
When the goal was to build a verified reference model, P2, P4, and P9 reported doing conformance
testing, which ensured that the production implementation was equivalent to the verified reference
model. Instead, when the goal was to build a verified implementation, P5, P6 and P7 reported doing
regression testing, comparing behavior in the legacy (unverified) system to that in the new (verified)
implementation. P7 motivated this style of testing as a way to “make sure to not break [clients]”.

Thus, regardless of whether they were building verified specifications or verified implementations,
participants reported testing their code in an end-to-end fashion, to make sure either that the
reference model (or verified implementation) was equivalent to the deployed code (or legacy code).
P4, P5, P7, P9, and P10 pointed out that such end-to-end testing was especially important to gain
trust. P7 stated that “shadow mode”—where the verified implementation is run in parallel with the
production code—was the “gold standard” and was “what made people believe we could ship” One
of the reasons, as P7 explained, is that even after fuzzing the verified code extensively, they found
seven or eight differences between the production answers and the verified code after months of
running in shadow mode, emphasizing the better coverage of real data. P10 went a step further:
“People don’t care about our examples [...] they want to see real data in real data out”

Testing Assumptions and Performance As part of testing, P7, P10, and P11 emphasized the
importance of using testing to validate any assumptions that arise from calls to external library
code. Such libraries are typically modeled in Dafny using : extern functions with trusted contracts.
P6 explained that the importance of testing these contracts (in addition to reading the library code)
as “sane contracts don’t tell you if it actually models reality” Finally, in the verified implementation
paradigm, P7, P10, P11, and P12 reported using testing to measure the performance of the target

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 403. Publication date: October 2025.

403:16 Eric Mugnier, Yuanyuan Zhou, Ranjit Jhala, and Michael Coblenz

code generated by Dafny. As the Dafny code is never run as such (§ 6), the performance aspect is
something that can only be checked post-transpiling as it depends on the target language.

Testing Correctness of Transpilation One participant reported that “verifying the Dafny code
doesn’t help if there’s a bug in the code generation.” The participant “had this little subroutine, and
I verified it perfectly true ... Fortunately I didn’t just trust the verification. I had some tests, too,
and the test failed because the code generation was wrong” which could defeat the entire purpose
of verification, which doesn’t “actually prove that the executing code is correct.”

Testing techniques
The end-to-end testing was carried out using a variety of existing techniques.

Fuzzing and Unit Testing For example, P2, P5, P6, P7 described using fuzzing or property-based
testing [Fink and Bishop 1997] and P2, P4 reported using unit tests. P5 pointed out that the advantage
of using these techniques is that they produce well-established metrics recognized in an industrial
setting especially “because there are a lot of company guidelines, [for example] your commit needs
to be covered by all tests” Additionally, P6, P12, and P13 explained also having “unit tests which we
write in Dafny and transpile alongside the code,” not as a substitute for verification, but to ensure
that the transpiling did not break any properties of the Dafny code.

Wrappers However, P7 and P10 noted that end-to-end testing is not the best fit to find problems with
incorrect libraries axioms as these kinds of tests are expensive and provide poor error localization.
To help with that, P10 remarked that a recent feature can “add dynamic checks [...] at the interface
boundaries,” allowing code to fail fast when the assumptions are violated. P6 knew about this
feature but had not used it yet. They explained: when there is a new feature they are “never the
first person to try it out”, illustrating the difficulty of staying up to date with the tool.

5.2 Code Review

“The glorious things about proofs is that they are self proving; there is no need to look over
somebody else’s proof. ” — P11

Ten of our participants reported using code reviews to check for errors. The three participants
that did not mention code reviews were working on research projects where they were the sole
contributor. Next, we describe how verification changes the nature of code reviews by increasing
the size of each review and shifting the focus on what needs to be closely vetted by human eyes:
specifications (especially those used as trusted assumptions) and transpiled execution targets.

Review Sizes Three participants (P5, P6 and P7) described code reviews as “quite large” compared to
recommended review best practices [Ram et al. 2018]. P6 explained that this increase in size relative
to regular software development is due to “multiple components all being updated at the same
time”: the specification, the implementation (proof), and the transpiled code can all be changed in
the same commit, making some participants remark that reviews were “annoying to check because
you had three times more things to check than a usual change” P4 and P12 also complained that
“the proofs are intertwined with the code,” affecting the readability of the review artifact as now
methods can be longer than they would be otherwise since they also contain proof annotations.

Reviewing Trusted Specifications. Large review sizes push developers to prioritize review of
components that they find critical. In particular, participants reported not reviewing proof code, as
they were machine checked, and so “there is no need to look over somebody else’s proof;” thereby
justifying not reviewing verified code. P6 summarized this prioritization as “the specification bit
gets the most attention, and then the implementation, and then the transpiled [code].” P9 explained
the focus on specifications: “reviews [are] the only time to check if the pre or post conditions are

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 403. Publication date: October 2025.

On the Impact of Formal Verification on Software Development 403:17

strong enough” P11 goes even one step further, as they explain that they only review the code
that is “trusted” (i.e. not machine verified) meaning the specifications for extern library methods.
Indeed, the dependencies such specifications and the underlying implementation can be a source
of errors as P6 attested of a case where “the actual code was changed but the contracts were not,”
thereby introducing an unsoundness in the specification arising from a mismatch between the
semantics of the updated code and that of the assumed contract used for client verification.
However, P11 remarked having had to sometimes read the proof “if maintainability is a problem”
(§ 4.4). In this case, their main concern is clarity as they “would ask them to put in either a comment
or an assertion” in cases where the proof is too hard to understand. This choice between comments
and assertions is interesting as they are not exactly equivalent as assertions are “active comments”
which have an effect on the readability of the code and on the time taken by Dafny to carry out the
verification. Thus, developers try to use assertions only when they help harden the proof (§ 4.4).

Reviewing Unnecessary Specifications One exception to the general trend of not reviewing
verified code is that sometimes developers found it valuable to review (verified) specifications to
detect any unnecessary clauses. Participants P4, P8, P9, and P10 reported one common and easy
smell is a missing correspondence between the pre- and post-conditions for a procedure, i.e. where a
contract contains pre-conditions that are not necessary to prove the contract’s post-conditions. For
example, P9 observed that engineers without formal methods background often “implemented data
structures with preconditions but there was no protocol or model on the other side against which
these preconditions would be verified”

P9 mentioned an example (shown in fig. 1): the method applyDiscount, which applies a
percentage to a given number x. The problem is that the precondition line 3—intended to check that
the discount is less than a 100—is not, in fact, required to establish the postcondition on line 4. If
this precondition is indeed required, then the postcondition should be strengthened with ensures
clauses such as the one on line 6. This issue stems from a disconnect in the user’s mental model
between what is true at run-time and what is relevant to establish the desired properties at compile-
time. To review such contracts, P9 advised “You should always start from your postcondition and
make that as tight as possible and then try to have the most liberal precondition on top. If you
think your precondition is too liberal then you know your postcondition is too weak.”

Reviewing Transpiled Targets As discussed in § 6, a major reason for selecting Dafny is that
the verified implementation can then be transpiled into a variety of target languages. Of course,
the transpiled code, in Java or Go, is not formally verified, and hence, developers spend time to
carefully review it. P5, P6, P7, P11 and P13 acknowledged looking at the transpiled code but at
different frequencies. At one extreme, P11 and P13 reported reviewing the target code only when
they needed to investigate why something was not working correctly or to find opportunities for
optimization. Developers can only directly investigate the transpiled target code as Dafny does
not have any debugging and profiling tools that could be used on the verified source. On the other
extreme, P5, P6 and P7 explained that they regularly inspected the transpiled code, because they
lack trust in the transpiler compared to the case of classical compilation, e.g. of Java source, where
they “don’t check the JVM bytecode.” These participants hoped that this trust deficiency will be
remedied in the future. P7 observed that looking at the transpiled target was at odds with the
idea of viewing that code as a “build artifact” and that “in principle we didn’t need to get it code
reviewed and just shove the changes into a version set”

Participants noted additional benefits beyond correctness from considering the transpiled code
in the review. Participants described it as “more democratic” meaning that it facilitates collaboration
with other teams that are more familiar with the target language than Dafny. P5 confirmed that “it
will be the [transpiled] Java that will be read by engineering production or security teams” and

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 403. Publication date: October 2025.

403:18 Eric Mugnier, Yuanyuan Zhou, Ranjit Jhala, and Michael Coblenz

consequently, they care deeply about the quality of the transpiled code and prioritize reviewing it
as they want it to “be perfect” before other teams review it.

6 Results: Impact of Verification on Packaging

“Any code you’re taking from the outside cannot have any preconditions on it.” — P7

Eight participants reported packaging their verified Dafny code as a library that can be called in
the target language after transpiling the verified code into the target language. Next, we describe
the motivation behind such transpiler-based packaging and the constraints it places on specification.

Transpiling into Target Packages

Many participants reported choosing Dafny in part because of its support for transpilation into
multiple target languages. P7 compared Dafny to F*, a similar automated verification language
but with which “connecting to Go would have been a challenge.” Most of our participants report
transpiling to a single target language: Rust (P2), Java (P4, P5, P6, P7, P9), C (P8) Go (P10), C# (P11).

Verify Once, Run Everywhere Only P12 and P13 reported using multiple targets: Java, C#, Go,
Rust. Interestingly they report this was the main reason they chose Dafny, in fact, prioritizing
the ability to target multiple languages over the verification capabilities. Dafny allowed them to
write the implementation in one language which could then be transpiled to different targets. They
preferred this to having to write multiple implementations in different languages, or using FFIs,
the former being too complicated to maintain, and the latter over-burdening the library’s users.

The Importance of Correct Transpilation The entire enterprise of verification only works if the
transpiler for Dafny to the target language(s) works. Eight participants mentioned this risk, which
forces them to review the generated code as discussed in § 5.2. P9 reported that “they caused a
few compiler crashes by just using it for months” P12 also pointed out that bugs in the compiled
artifact are sometimes a product of these target languages changing with the example of Go that
“changes a lot between versions” We note, however, that Dafny has an extensive test suite for each
of its runtimes and has also reported using XD Smith [Irfan et al. 2022], a fuzzing framework for
Dafny, to perform differential testing between the different transpilers.

Keep Dafny Close to the Target The main challenge when targeting multiple languages is that
“writing Dafny code which is easily compilable to one language doesn’t mean you’ve got Dafny
code which is easily compilable to a different language.” A few participants, P5, P7, and P9, also
reported caring about readability of the target code, as per P5, “it will be the [transpiled] Java
code that will be read by engineering and production teams.” P13 observed that types and data
structures are different between languages. Indeed, seven participants noted that the transpiler
produces unoptimized, slow code. P7 described the example of the Dafny built-in strings which, on
transpilation, would induce "a bunch of painful, slow, useless copying of inputs”

To improve readability and performance, participants reported avoiding relying on the transpiler
being smart, instead writing Dafny close to idiomatic target code. For example, instead of using
Dafny’s built-in strings, they directly used types closer to those in the intended target. This meant
having to separate some part of the implementation depending on the target language, which has
the downside of incurring a lot of additional work (instead of being able to rely on the transpiler.)
To reconcile this tension, P5, P6 and P7 reported using a bespoke transpiler: “we are using this
idiomatic compiler which is not destroying the code, because once you write things in Dafny,
potentially, the original Dafny compiler may change data types and doesn’t give you control over
which data, operation or library you want to use”

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 403. Publication date: October 2025.

On the Impact of Formal Verification on Software Development 403:19

Package Specifications

Explicating Assumptions Several participants reported that packaging into libraries encourages
developers to write concise specifications (§ 4.1). P11 observed: “if the user of your program is
another program then it’s more likely that its API is understandable and compact.” Further, as P6
observed, library packaging “brings consistency out of the box” through a unified specification that
“makes it easier for service teams to know what the default behavior should be.” This consistent
behavior can be used as an argument for better reliability, and is also a way “to reduce the efforts
the engineers have to put integrating” Next, we describe how packaging affects the assumptions at
the boundaries.

Enforcing Assumptions via Dynamic Checks Indeed, avoiding assumptions on the input is the
safest bet as invalid assumptions can impact the guarantees provided by verification. To avoid that,
P7 reported that they checked that the inputs are valid, through “a wrapper [...] that would crash if
the input didn’t satisfy the preconditions that you need.” Such run-time checks are not at odds with
static verification guarantees, as these fail fast cases are included in the specification and are part
of the contract of the library. Interestingly, one participant reported using the opposite approach
where they were willing to trust that the unverified serializer and deserializer were giving them
inputs that were correct, as they had control over the implementation of those components.

7 Results: Impact of Verification on Maintenance

Our findings contrast with the conventional wisdom that verification renders the code difficult
to change and maintain, as each change requires updating the specification and proof in addition
to the code. In particular, our study shows participants found that formal specifications enabled
the precise analysis of the impacts of code changes, and hence, formal verification allowed for
aggressive code optimizations without fear of breaking functionality.

Specification Enables Impact Analysis

Change impact analysis [Arnold and Bohner 1996] is about determining the implications of code
changes. Several participants mentioned how specifications were a way to scope the effects of
change, or as P5 put it, “another approximation of what will break [when code is changed]” Indeed,
P9 explains that this is one of the reasons they chose to verify their (reference) model in the first
place as it allows them to “see what happens if something has changed.” The rationale is that if
after a change in the code the specification fails to hold, participants could quickly infer what the
behavior has been affected. This allowed them to narrow the scope and move from “changing a
whole thing into changing small things,” as P5 explained, potentially focusing testing efforts solely
on the affected parts. Additionally, repairing or retrofitting the specification and the proof with
“small fixes” gave more confidence to P10 that their change did not have any outstanding effects.

Finally, the specification itself can be used to argue for a change. Participant P7 reported an
example where the specification exposed a “non-local control flow” that was not obvious in the code.
This resulted in pushing for a simplification of the code, which translated to a simpler specification
and proof. Importantly, as P5 pointed out, all of this is only possible “after the first [verified]
deployment,” as you can make these changes by using the existing specification.

Verification Enables Fearless Optimization

Several participants reported that verification allowed them to implement, as P11 put it, “optimiza-
tions that normal developer[s] would never [consider]”. In fact, P12 explained that it is “where
Dafny really pulled its weight” as “localize[d] changes are easy and straightforward,’ meaning that
changes that do not deeply affect the specification can be quickly and confidently implemented.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 403. Publication date: October 2025.

403:20 Eric Mugnier, Yuanyuan Zhou, Ranjit Jhala, and Michael Coblenz

Optimizing Computations P5 described these changes as “algorithmic optimization”: they do
not modify the end result but instead simplify the underlying computation. P7 reported using this
as way to show results of verification early. They individually verified one of the key functions
of their system, that they then optimized before verifying the full system. This allowed them to
demonstrate the value of verification and get buy-in from various stakeholders.

Optimizing Redundant Checks P12 and P13 reported using verification to remove redundant
checks on function arguments, thereby speeding up the code, especially if the function is called often.
P12 explained that this is made possible by using requires clauses, which can check statically
that the arguments are valid, and thus do not need to check them at runtime.

Modularity and Change We observed a tension between breaking Dafny code into smaller pieces
(methods and functions) to make checking faster and avoid brittle proofs § 4.4 versus maintainability.
For example, P10 noted “you want methods to be very short [...] So this creates a bunch of work.
You have to write a spec for the intermediate function,” which can complicate refactoring. It can be
difficult to build compact interfaces when each function is very small, as compact interfaces might
require bundling together multiple functions —something often avoided to keep proofs small.

8 Opportunities for Improving Verified Software Engineering

“We have just spent less time thinking about specifications and proof as first class citizens
than we have for programs.” — P4

We now distill our findings into recommendations for improving verified software engineering.
We first discuss the implications of our findings on how the process of specification and proof could
be simplified. We then highlight ways to tighten the integration between verification and the rest
of the development process, and to streamline the long-term maintenance of verified code.

8.1 Engineering Specification and Proof

The assessment from P4 at the start of the section summarizes the sentiment that if we are to
fully exploit the capabilities of verifiers, we need to find ways to make proving as accessible as
programming. One indication of the current gap between the two is the observation that the
perception of the verifier depends on the background of the participants. On one hand, participants
with a formal methods background appreciate Dafny’s “simplicity” (P7), and reported that they
learned it “on the fly” (P5). On the other hand, participants with a software engineering background
complained that the learning curve is “steep” (P1) and sometime struggle to see the value of the
extreme effort they put to not only learn but also to use the verifier. We can learn from both
perspectives. The formal methods view suggests that verification in Dafny is feasible for many
large-scale software systems but requires substantial effort and specialized skills. The software
engineering view suggests that we are not yet at a point where the available resources and tooling
make this effort feel pleasurable or worthwhile for most software engineers.

To this end, we recommend two areas of improvement to advance verified software engineering
as a more mainstream and accessible practice. First, we should study what constitutes a clean proof.
Second, we should enhance the interactivity of the verifier. We believe Dafny as language has made
significant strides towards this goal, with more than fifty releases since its creation, introducing
new features, bug fixes, performance improvements, better error messages, and an improved client.
However, there are still complicated research problems that we need to solve as a community.

What is a Good Proof?

Further research should identify what constitutes a good proof and develop ways of enforcing these
lessons via style guides or linters. As we have seen, techniques can help write the specification (§ 4.1)

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 403. Publication date: October 2025.

On the Impact of Formal Verification on Software Development 403:21

and the proof (§ 4.2) to prevent problems such as unsoundness or incompleteness. However, how to
write clear, performant, and robust (not brittle) verified code is still an open question. The answer
will likely differ across users or projects. While some style guides exist in different projects [Daf
2023; Research 2015], they are not extensive, and they do not explain the rationale behind the style
choices. Although the Dafny IDE provides visual cues to identify potential problems along with
the warnings in the client itself, it is not configurable. Additionally, the available warnings are
somewhat limited, as for example they do not cover aspects such as variable naming.

Recommendation: Style Guides and Linters Since different users will likely need different
guidelines, we need to be able to enforce these guidelines through linters in a configurable manner.
Thus, we recommend that the auto-active verification community work on extensible linters like
Megdiche et al. [2022] and quantitative analyses like Huch and Stathopoulos [2023] to identify
good proof styles and patterns. Further, we recommend adapting efforts like Martin [2008] and
Ousterhout [2018], to the intersection of specifications, code, and proof. These efforts would
go beyond existing style guides by providing general guidelines for naming conventions, code
organization, and proof structure.

How to Improve Interactivity

Development with verifiers can feel like a slog in the dark, trying to decipher error messages and
avoid unpredictable timeouts, while guided only by pricks of light from manually inserted assertions
(§ 4.3) Dafny integrates counterexamples into the Dafny IDE and CLI [Chakarov et al. 2022] that are
supposed to help with debugging. However, in our study, only P4 reported using counterexamples,
and with mixed results: “It can’t really give you a counterexample, or the counterexample it gives
you is because it has insufficient visibility into the objects of the counterexample, and distinguishing
those situations from genuine counterexamples [...] requires experience” Alternatively, tools like
ProofPlumber [Cho et al. 2024] can suggest potential fixes, and Laurel [Mugnier et al. 2025a]
can automatically generate assertions. In practice, however, they remain sparsely used, due to
limited support and engineering resources. The situation may be improved by introducing better
feedback mechanisms that make the verifier’s context more explicit, and hence the process of
proving more interactive, which might help users more easily build a mental model. “You could
visualize the context of what the verifier receives, and you could define what that means [...] that
would help bring it closer to the predictability of Rocq proofs” (P10). Of course, achieving this is
not straightforward, as it requires defining what “context” means in the auto-active verifier’s case,
and finding a good way to visualize such contexts.

Defining Contexts One approach is to define the context as all the assumptions gathered from the
code that apply to a given assertion, which would reduce the need to constantly navigate back and
forth in the code to check lemma definitions and their postconditions. However, this would not
entirely bridge the gap between the verifier and the user, as the SMT solver can infer new facts
that are consequences of the above assumptions, but are not explicit in the code. Explicating such
facts is hard for two reasons. First, these facts may, for example, capture relationships that are not
present in the code. Indeed, some relationships may be syntactically inexpressible, as, e.g. they may
be about the values of the same variable but at different points in time. Second, we want to avoid
overwhelming the developer with excessive information that is irrelevant or is overly complex.

Visualizing Contexts Another challenge is determining the best way to visualize proof contexts.
One approach is to adopt something similar to Rocq or Lean, where the user can see the context
of the proof at any time. However, it is unclear whether this is the best approach, as unlike proof
assistants, verifiers might present incomplete or redundant information. Another possibility is to
allow users to interactively query the solver, similar to debuggers that display values at runtime.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 403. Publication date: October 2025.

403:22 Eric Mugnier, Yuanyuan Zhou, Ranjit Jhala, and Michael Coblenz

Participant P10 described this idea: “you’re running an application [...] it throws a seg fault [...]
and then [in GDB] you’re paused in the in the current stack effectively. I would love [...] being able
to drop into some kind of interactive environment where I could probe [...] the state of the solver,
or [...] ask to solve normal questions more interactively” A counterargument to this approach is
that users are already effectively doing this when they insert assertions to debug their proofs.

Recommendation: Incremental & Interactive Contexts Thus, we believe the path forward is to
find ways to appropriately determine the entire context that is relevant at a given program point
or place where a verification error is reported and find ways to either visualize it completely—or
interactively in the style of a debugger.

8.2 Integrating Verification with Other Development Processes

Our study shows that other than the specification and proof phases (§ 4), many of the other
phases of the verified software development process are similar to those of (non-verified) software
engineering. For example, as noted by P7 (§ 5.1), testing and verification are orthogonal, and projects
that pushed their products to production still relied on some form of testing.

However, our study also shows that these processes are currently disconnected. Many partici-
pants reported having to build custom tooling to integrate their verified code into the traditional
development process. For example, P12 and P13 discussed Duvet, a tool developed in house, to
connect informal requirements and formal specifications, and P4 built a client to test the reference
model itself. Similarly, P7 and P6 created custom scripts to generate separate code reviews for the
different artifacts, i.e., the generated (transpiled) code and the specification. Additionally, several
participants expressed a desire for tools that would bridge the gap between the verified code and
the broader software development process. Consequently, we recommend lines of work to more
tightly integrate the formal specifications and proof with testing, review, and versioning.

Specification & Testing
Several participants expressed a desire for better integration between testing and specification.

Recommendation: Testing External Library Contracts Tests are particularly useful in validating
the axiomatically trusted contracts for external library code (§ 5.1). For example, P7 noted that “It
would be nice to have a standard library for Java that was tested against all of the axioms we wrote
about those about the library functions.” One could imagine a tool that automatically generates
tests to confirm or refute such contracts [Goldweber et al. 2024; Seidel et al. 2015]. While such a
tool would not provide the same level of guarantees as verifying the library, it could identify issues
prior to end-to-end testing, which is when participants reported discovering them. P13 proposed
a more radical approach: a framework where specifications “rests its truth on execution.” In this
model, a lemma would be converted into tests, allowing developers to bypass proof obligations
and instead confirm correctness by testing. Such a framework could serve as a practical way to
bootstrap the specifications, particularly for well-known algorithms where proving correctness is
tedious.

Recommendation: External Library Contracts from Tests Dually, we envision using existing
tests to be automatically generate the library contracts. As discussed in § 4.1, the primary challenge
when using tests as a way to infer the specification is to generalization, perhaps by using ideas
from the literature on generalizing dynamic executions into invariants [Ernst et al. 2007].

Verification & Code Review

Verified code reviews tend to be long and error-prone (§ 5.2). In contrast, in the programming
languages community, proof assistants are increasingly used to shorten papers by omitting explicit

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 403. Publication date: October 2025.

On the Impact of Formal Verification on Software Development 403:23

proofs, letting reviewers focus on the theorems, since the proof is machine verified [Ringer 2020].
Unfortunately, in the case of verified code, we contend with the additional challenges of (1) the
proof being intertwined with the implementation, and (2) the requirement that the code itself be
readable and maintainable: reviewing the specification alone is often insufficient as the reviewer
must also assess algorithmic complexity of the code and the maintainability of proofs (§ 5.2).

Recommendation: Multiview Reviews Consequently, we recommend rethinking how verified
code is reviewed, by adopting a more tool-structured separation of concerns. Currently, a review
has a single monolithic textual diff, making it difficult to focus on individual aspects. Instead P12
proposed an approach where a tool that enabled targeted reviews by “Hiding all the comments, all
the asserts, the requires, the assumes, and everything that doesn’t generate code. And let me just
see the actual executable bits just to be able to see what’s happening.” A strictly one-component-
at-a-time approach might be too simplistic, as it might blind reviewers to relationships between
different parts of the verified code. A more flexible design could enable reviewers to toggle their
focus while still maintaining a holistic view of the codebase.

9 Related work

Usability of automated verifiers To our knowledge, Dafny is the main automated verifier whose
usability has been studied, primarily through case studies or experience reports. Faria and Abreu
[2023] presents ten cases of verifying well-known algorithms in Dafny, highlighting challenges
such as proof debugging and the need for specification testing. We found that these issues also apply
to larger scale verification projects and explores the impact of the software development process,
including testing, deployment, and maintenance. Other studies have examined the experience of
verifying programs in Dafny [de Muijnck-Hughes and Noble 2024; Noble et al. 2024] or teaching
Dafny to students [Noble 2024]. Notably, they also recognize that while verifying in Dafny is
time-consuming, its similarity to imperative programming makes it accessible. de Muijnck-Hughes
and Noble [2024] compares the Idris proof assistant to Dafny, finding that Dafny enables shorter
proofs but lacks transparency about its correctness. This supports our findings in § 4.3: while proof
assistants may be more complex, they seem more interactive than automated tools such as Dafny.

Pearce [2015] presents usability hypotheses based on their experience with Whiley [Pearce and
Groves 2013]. Our findings confirm some of their hypotheses, particularly regarding the difficulty of
writing assertions and the necessity of testing specifications to detect errors. Gamboa et al. [2025]
studies the usability of LiquidHaskell [Vazou et al. 2014], which is integrated with Haskell [Marlow
2010]. While some of their findings are specific to LiquidHaskell, such as the unclear divide between
Haskell and the Liquid types, they share some of our findings, such as the difficulty of understanding
certain error messages.

Usability of verification tools at large Prior studies have applied human-centered interaction
approaches to understand the challenges users face with proof assistants. While they differ in
programming models and automation techniques, they ultimately achieve the same goal and can
provide valuable insights. Shi et al. [2025] presents a contextual study of Rocq and Lean users,
analyzing how users engage with these tools within their own projects. Although they focus on
immediate interaction rather than the development process at large, they similarly highlight the
importance of interactivity and proof design. Aitken et al. [1998] study seven HOL [Nipkow et al.
2002] users implementing list data structures. They found that experts completed the task more
efficiently than novices. While one might expect that verifiers’ automation would alleviate this
problem, we observe similar issue due to the lack of interactivity.

Other works [Andronick et al. 2012; Staples et al. 2014] have examined one of the largest formal
verification projects, the seL4 microkernel [Klein et al. 2009], documenting insights from real-world

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 403. Publication date: October 2025.

403:24 Eric Mugnier, Yuanyuan Zhou, Ranjit Jhala, and Michael Coblenz

verification. Similarly to our study, some of their findings only appeared at scale, such as the relation
between verification and performant code, underscoring the need to study large projects.

Survey studies [Huang et al. 2024; Ringer et al. 2019] have analyzed formal verification projects
and the lessons they offer. Ringer et al. [2019], presents the concept of proof engineering, —designing
scalable proofs through careful structuring. While Dafny requires different design considerations,
we also observe the importance of engineering proofs effectively.

Usability of programming languages and software development tools Several works have
applied qualitative methods to understand the usability of programming languages [Coblenz et al.
2021; Fulton et al. 2021; Lubin and Chasins 2021; Rennels and Chasins 2023] and their tools [Barke
et al. 2023]. Like our study, Fulton et al. [2021], also interviewed developers to understand the
benefits and challenges of a language, Rust. While Rust offers different guarantees from Dafny;, it has
a steep learning curve and requires significant effort to write correct code, similar to what we found
with Dafny. Finally, several studies have explored software development practices and their impact
on the final deliverables, for example focusing on how software development is applied [Adolph
et al. 2012] or the effect of agile methodologies [Waterman et al. 2015]. Our study uses a similar
approach to understand a different domain—verification with automated verifiers.

10 Conclusion

We identified key ways that auto-active verification affects software development processes. In
addition to the usual software development steps, developers must also debug their proofs and
harden their code and proofs to keep them valid in light of future changes. They continue to use
traditional testing approaches, in part because they need to ensure the specifications are correct
and in part because some properties may be left unspecified. However, verification opens new
opportunities for software engineers, who can improve performance and make other changes
with lower risk of introducing regressions. Developers from formal backgrounds have different
expectations of verification tools and techniques for using them than developers from software
engineering backgrounds. Our findings offer new opportunities to improve the process of verified
software engineering.

Data-Availability Statement
Our artifact is available on Zenodo [Mugnier et al. 2025b] and consists of two documents:

(1) our interview materials, including the recruitment email and the information sheet that was
provided to the participants
(2) our study codebook, that was used to analyze the transcripts.

Acknowledgments

We thank our anonymous reviewers for their valuable feedback. This work was supported by the
Qualcomm Chair Endowment.

References

2015. UpperBound.i.dfy. https://github.com/microsoft/Ironclad/blob/2fe4dcdc323b92e93£759¢cc3e373521366b7f691/ironfleet/
src/Dafny/Distributed/Impl/Common/UpperBound.i.dfy#L10.

2023. Dafny VMC Guidelines. https://github.com/dafny-lang/Dafny-VMC/blob/main/Guidelines.md.

2023. Verification Optimization. https://dafny.org/latest/VerificationOptimization/VerificationOptimization

Steve Adolph, Philippe Kruchten, and Wendy Hall. 2012. Reconciling perspectives: A grounded theory of how people manage
the process of software development. Journal of Systems and Software (2012). https://doi.org/10.1016/j.jss.2012.01.059

J.S. Aitken, P. Gray, T. Melham, and M. Thomas. 1998. Interactive Theorem Proving: An Empirical Study of User Activity.
Journal of Symbolic Computation 25, 2 (1998), 263-284. https://doi.org/10.1006/jsc0.1997.0175

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 403. Publication date: October 2025.

https://github.com/microsoft/Ironclad/blob/2fe4dcdc323b92e93f759cc3e373521366b7f691/ironfleet/src/Dafny/Distributed/Impl/Common/UpperBound.i.dfy#L10
https://github.com/microsoft/Ironclad/blob/2fe4dcdc323b92e93f759cc3e373521366b7f691/ironfleet/src/Dafny/Distributed/Impl/Common/UpperBound.i.dfy#L10
https://github.com/dafny-lang/Dafny-VMC/blob/main/Guidelines.md
https://dafny.org/latest/VerificationOptimization/VerificationOptimization
https://doi.org/10.1016/j.jss.2012.01.059
https://doi.org/10.1006/jsco.1997.0175

On the Impact of Formal Verification on Software Development 403:25

June Andronick, Ross Jeffery, Gerwin Klein, Rafal Kolanski, Mark Staples, He Zhang, and Liming Zhu. 2012. Large-scale
formal verification in practice: A process perspective. In 2012 34th International Conference on Software Engineering (ICSE).
1002-1011. https://doi.org/10.1109/ICSE.2012.6227120

RS Arnold and SA Bohner. 1996. An introduction to software change impact analysis. Software Change Impact Analysis
(1996), 1-26.

AWS Labs. 2025. Duvet: A requirements traceability tool. https://github.com/awslabs/duvet.

Shraddha Barke, Michael B. James, and Nadia Polikarpova. 2023. Grounded Copilot: How Programmers Interact with
Code-Generating Models. OOPSLA1 (2023). https://doi.org/10.1145/3586030

Scott O. Bradner. 1997. Key words for use in RFCs to Indicate Requirement Levels. RFC 2119. https://doi.org/10.17487/RFC2119

Aleksandar Chakarov, Aleksandr Fedchin, Zvonimir Rakamaric, and Neha Rungta. 2022. Better Counterexamples for Dafny.
In Tools and Algorithms for the Construction and Analysis of Systems - 28th International Conference, TACAS 2022, Held
as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7,
2022, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 13243), Dana Fisman and Grigore Rosu (Eds.). Springer,
404-411. https://doi.org/10.1007/978-3-030-99524-9_23

Aleks Chakarov, Jaco Geldenhuys, Matthew Heck, Mike Hicks, Sam Huang, Georges Axel Jaloyan, Anjali Joshi, Rustan
Leino, Mikael Mayer, Sean McLaughlin, Akhilesh Mritunjai, Clément Pit Claudel, Sorawee Porncharoenwase, Florian
Rabe, Marianna Rapoport, Giles Reger, Cody Roux, Neha Rungta, Robin Salkeld, Matthias Schlaipfer, Daniel Schoepe,
Johanna Schwartzentruber, Serdar Tasiran, Aaron Tomb, Emina Torlak, John Tristan, Lucas Wagner, Mike Whalen, Remy
Willems, Jenny Xiang, Tae Joon Byun, Joshua Cohen, Ruijie Wang, Junyoung Jang, Jakob Rath, Hira Tagdees Syeda,
Dominik Wagner, and Yongwei Yuan. 2025. Formally verified cloud-scale authorization. (2025). https://www.amazon.
science/publications/formally-verified-cloud-scale-authorization

Kathy Charmaz. 2014. Constructing grounded theory. SAGE publications Ltd.

Chanhee Cho, Yi Zhou, Jay Bosamiya, and Bryan Parno. 2024. A Framework for Debugging Automated Program Verification
Proofs via Proof Actions. In International Conference on Computer Aided Verification (CAV). https://www.microsoft.com/en-
us/research/publication/a-framework-for-debugging-automated-program-verification-proofs-via-proof-actions/

Michael Coblenz, Gauri Kambhatla, Paulette Koronkevich, Jenna L. Wise, Celeste Barnaby, Joshua Sunshine, Jonathan
Aldrich, and Brad A. Myers. 2021. PLIERS: A Process that Integrates User-Centered Methods into Programming Language
Design. ACM Trans. Comput.-Hum. Interact. 28, 4, Article 28 (July 2021), 53 pages. https://doi.org/10.1145/3452379

J. de Muijnck-Hughes and J. Noble. 2024. Colouring Flags with Dafny & Idris.

Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos Pacheco, Matthew S. Tschantz, and Chen
Xiao. 2007. The Daikon system for dynamic detection of likely invariants. Sci. Comput. Program. 69, 1-3 (2007), 35-45.
https://doi.org/10.1016/J.SCIC0.2007.01.015

Jodo Pascoal Faria and Rui Abreu. 2023. Case Studies of Development of Verified Programs with Dafny for Accessibility
Assessment. In Fundamentals of Software Engineering.

George Fink and Matt Bishop. 1997. Property-based testing: a new approach to testing for assurance. SIGSOFT Softw. Eng.
Notes 22, 4 (July 1997), 74-80. https://doi.org/10.1145/263244.263267

Kelsey R. Fulton, Anna Chan, Daniel Votipka, Michael Hicks, and Michelle L. Mazurek. 2021. Benefits and Drawbacks of
Adopting a Secure Programming Language: Rust as a Case Study. In Seventeenth Symposium on Usable Privacy and Security
(SOUPS 2021). USENIX Association, 597-616. https://www.usenix.org/conference/soups2021/presentation/fulton

Catarina Gamboa, Abigail Reese, Alcides Fonseca, and Jonathan Aldrich. 2025. Usability Barriers for Liquid Types. Proc.
ACM Program. Lang. PLDI (June 2025). https://doi.org/10.1145/3729327

Eli Goldweber, Weixin Yu, Seyed Armin Vakil Ghahani, and Manos Kapritsos. 2024. IronSpec: Increasing the Reliability of
Formal Specifications. In 18th USENIX Symposium on Operating Systems Design and Implementation (OSDI 24). USENIX
Association, Santa Clara, CA, 875-891. https://www.usenix.org/conference/osdi24/presentation/goldweber

Greg Guest, Arwen Bunce, and Laura Johnson. 2006. How Many Interviews Are Enough?: An Experiment with
Data Saturation and Variability. Field Methods 18, 1 (2006), 59-82. https://doi.org/10.1177/1525822X05279903
arXiv:https://doi.org/10.1177/1525822X05279903

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno, Michael L. Roberts, Srinath Setty, and Brian
Zill. 2015. IronFleet: proving practical distributed systems correct. In Proceedings of the 25th Symposium on Operating
Systems Principles. https://doi.org/10.1145/2815400.2815428

Li Huang, Sophie Ebersold, Alexander Kogtenkov, Bertrand Meyer, and Yinling Liu. 2024. Lessons from Formally Verified
Deployed Software Systems (Extended version). arXiv:2301.02206 [cs.SE] https://arxiv.org/abs/2301.02206

Fabian Huch and Yiannos Stathopoulos. 2023. Formalization Quality in Isabelle. In Intelligent Computer Mathematics: 16th
International Conference, CICM 2023, Cambridge, UK, , September 5-8, 2023 Proceedings (Cambridge, United Kingdom).
Springer-Verlag, Berlin, Heidelberg, 142-157. https://doi.org/10.1007/978-3-031-42753-4_10

Ahmed Irfan, Sorawee Porncharoenwase, Zvonimir Rakamari¢, Neha Rungta, and Emina Torlak. 2022. Testing Dafny
(experience paper). In Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 403. Publication date: October 2025.

https://doi.org/10.1109/ICSE.2012.6227120
https://github.com/awslabs/duvet
https://doi.org/10.1145/3586030
https://doi.org/10.17487/RFC2119
https://doi.org/10.1007/978-3-030-99524-9_23
https://www.amazon.science/publications/formally-verified-cloud-scale-authorization
https://www.amazon.science/publications/formally-verified-cloud-scale-authorization
https://www.microsoft.com/en-us/research/publication/a-framework-for-debugging-automated-program-verification-proofs-via-proof-actions/
https://www.microsoft.com/en-us/research/publication/a-framework-for-debugging-automated-program-verification-proofs-via-proof-actions/
https://doi.org/10.1145/3452379
https://doi.org/10.1016/J.SCICO.2007.01.015
https://doi.org/10.1145/263244.263267
https://www.usenix.org/conference/soups2021/presentation/fulton
https://doi.org/10.1145/3729327
https://www.usenix.org/conference/osdi24/presentation/goldweber
https://doi.org/10.1177/1525822X05279903
https://arxiv.org/abs/https://doi.org/10.1177/1525822X05279903
https://doi.org/10.1145/2815400.2815428
https://arxiv.org/abs/2301.02206
https://arxiv.org/abs/2301.02206
https://doi.org/10.1007/978-3-031-42753-4_10

403:26 Eric Mugnier, Yuanyuan Zhou, Ranjit Jhala, and Michael Coblenz

(Virtual, South Korea) (ISSTA 2022). Association for Computing Machinery, New York, NY, USA, 556-567. https:
//doi.org/10.1145/3533767.3534382

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin, Dhammika Elkaduwe, Kai
Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. 2009. seL4: formal
verification of an OS kernel. In Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles.
https://doi.org/10.1145/1629575.1629596

Andrea Lattuada, Travis Hance, Chanhee Cho, Matthias Brun, Isitha Subasinghe, Yi Zhou, Jon Howell, Bryan Parno, and
Chris Hawblitzel. 2023. Verus: Verifying Rust Programs using Linear Ghost Types. Proc. ACM Program. Lang. OOPSLA1
(2023), 286-315. https://doi.org/10.1145/3586037

K. Rustan M. Leino. 2010. Dafny: An Automatic Program Verifier for Functional Correctness. In Logic for Programming,
Artificial Intelligence, and Reasoning, Edmund M. Clarke and Andrei Voronkov (Eds.). https://doi.org/10.1007/978-3-642-
17511-4_20

K Rustan M Leino and Michal Moskal. 2010. Usable auto-active verification. In Usable Verification Workshop.

Rustan Leino. 2008. Specification and Verification of Object-Oriented Software. In Marktoberdorf International Summer School
2008. https://www.microsoft.com/en-us/research/publication/specification-verification-object- oriented- software/
Xavier Leroy. 2006. Formal certification of a compiler back-end, or: programming a compiler with a proof assistant. In 33rd
ACM symposium on Principles of Programming Languages. ACM Press, 42-54. http://xavierleroy.org/publi/compiler-

certif.pdf

Justin Lubin and Sarah E. Chasins. 2021. How statically-typed functional programmers write code. Proc. ACM Program.
Lang. 5, OOPSLA, Article 155 (Oct. 2021), 30 pages. https://doi.org/10.1145/3485532

Simon Marlow. 2010. Haskell 2010 Language Report. (07 2010).

Robert C. Martin. 2008. Clean Code: A Handbook of Agile Software Craftsmanship (1 ed.). Prentice Hall PTR, USA.

Nora McDonald, Sarita Schoenebeck, and Andrea Forte. 2019. Reliability and Inter-rater Reliability in Qualitative Research:
Norms and Guidelines for CSCW and HCI Practice. Proc. ACM Hum.-Comput. Interact. 3, CSCW, Article 72 (Nov. 2019),
23 pages. https://doi.org/10.1145/3359174

Yecine Megdiche, Fabian Huch, and Lukas Stevens. 2022. A Linter for Isabelle: Implementation and Evaluation. CoRR
abs/2207.10424 (2022). https://doi.org/10.48550/ARXIV.2207.10424 arXiv:2207.10424

Eric Mugnier, Emmanuel Anaya Gonzalez, Nadia Polikarpova, Ranjit Jhala, and Zhou Yuanyuan. 2025a. Laurel: Unblocking
Automated Verification with Large Language Models. 9, OOPSLA1 (2025). https://doi.org/10.1145/3720499

Eric Mugnier, Yuanyuan Zhou, Ranjit Jhala, and Michael Coblenz. 2025b. Artifact for "On the Impact of Formal Verification
on Software Development". https://doi.org/10.5281/zenodo.15761040

Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. 2002. Isabelle/HOL: a proof assistant for higher-order logic.
Springer-Verlag, Berlin, Heidelberg.

James Noble. 2024. Learn ’em Dafny!

James Noble, Julian Mackay, Tobias Wrigstad, Andrew Fawcet, and Michael Homer. 2024. Dafny vs. Dala: Experience with
Mechanising Language Design. In Proceedings of the 26th ACM International Workshop on Formal Techniques for Java-like
Programs. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3678721.3686228

John Ousterhout. 2018. A Philosophy of Software Design (1st ed.).

David J. Pearce. 2015. Some usability hypotheses for verification. In Proceedings of the 6th Workshop on Evaluation and
Usability of Programming Languages and Tools (PLATEAU 2015). https://doi.org/10.1145/2846680.2846691

David J. Pearce and Lindsay Groves. 2013. Whiley: A Platform for Research in Software Verification. In Software Language
Engineering. Springer International Publishing, Cham, 238-248.

Achyudh Ram, Anand Ashok Sawant, Marco Castelluccio, and Alberto Bacchelli. 2018. What makes a code change
easier to review: an empirical investigation on code change reviewability. In Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering
(Lake Buena Vista, FL, USA) (ESEC/FSE 2018). Association for Computing Machinery, New York, NY, USA, 201-212.
https://doi.org/10.1145/3236024.3236080

Lisa Rennels and Sarah E. Chasins. 2023. How Domain Experts Use an Embedded DSL. Proc. ACM Program. Lang. 7,
OOPSLAZ2, Article 275 (Oct. 2023), 32 pages. https://doi.org/10.1145/3622851

Microsoft Research. 2015. Ironfleet Style Guide. https://github.com/microsoft/Ironclad/blob/
2fe4dcdc323b92e93£759cc3e373521366b7f691/ironfleet/STYLE.md.

Talia Ringer. 2020. Mechanized Proofs for PL: Past, Present, and Future. https://blog.sigplan.org/2020/01/29/mechanized-
proofs-for-pl-past-present-and-future/.

Talia Ringer, Karl Palmskog, Ilya Sergey, Milos Gligoric, and Zachary Tatlock. 2019. QED at Large: A Survey of Engineering
of Formally Verified Software. Found. Trends Program. Lang. (2019). https://doi.org/10.1561/2500000045

Neha Rungta. 2024. Trillions of Formally Verified Authorizations a day! https://2024.splashcon.org/details/splash-2024-
keynotes/3/Trillions-of-Formally- Verified- Authorizations-a-day-.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 403. Publication date: October 2025.

https://doi.org/10.1145/3533767.3534382
https://doi.org/10.1145/3533767.3534382
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/3586037
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://www.microsoft.com/en-us/research/publication/specification-verification-object-oriented-software/
http://xavierleroy.org/publi/compiler-certif.pdf
http://xavierleroy.org/publi/compiler-certif.pdf
https://doi.org/10.1145/3485532
https://doi.org/10.1145/3359174
https://doi.org/10.48550/ARXIV.2207.10424
https://arxiv.org/abs/2207.10424
https://doi.org/10.1145/3720499
https://doi.org/10.5281/zenodo.15761040
https://doi.org/10.1145/3678721.3686228
https://doi.org/10.1145/2846680.2846691
https://doi.org/10.1145/3236024.3236080
https://doi.org/10.1145/3622851
https://github.com/microsoft/Ironclad/blob/2fe4dcdc323b92e93f759cc3e373521366b7f691/ironfleet/STYLE.md
https://github.com/microsoft/Ironclad/blob/2fe4dcdc323b92e93f759cc3e373521366b7f691/ironfleet/STYLE.md
https://blog.sigplan.org/2020/01/29/mechanized-proofs-for-pl-past-present-and-future/
https://blog.sigplan.org/2020/01/29/mechanized-proofs-for-pl-past-present-and-future/
https://doi.org/10.1561/2500000045
https://2024.splashcon.org/details/splash-2024-keynotes/3/Trillions-of-Formally-Verified-Authorizations-a-day-
https://2024.splashcon.org/details/splash-2024-keynotes/3/Trillions-of-Formally-Verified-Authorizations-a-day-

On the Impact of Formal Verification on Software Development 403:27

Eric L. Seidel, Niki Vazou, and Ranjit Jhala. 2015. Type Targeted Testing. In Programming Languages and Systems - 24th
European Symposium on Programming, ESOP 2015, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings (Lecture Notes in Computer Science, Vol. 9032), Jan
Vitek (Ed.). Springer, 812-836. https://doi.org/10.1007/978-3-662-46669-8_33

Jessica Shi, Cassia Torczon, Harrison Goldstein, Benjamin C. Pierce, and Andrew Head. 2025. QED in Context: An Observation
Study of Proof Assistant Users. OOPSLA. https://doi.org/10.1145/3720426

Mark Staples, Ross Jeffery, June Andronick, Toby Murray, Gerwin Klein, and Rafal Kolanski. 2014. Productivity for
proof engineering. In Proceedings of the 8th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (Torino, Italy). Association for Computing Machinery, New York, NY, USA, Article 15, 4 pages.
https://doi.org/10.1145/2652524.2652551

Xudong Sun, Wenjie Ma, Jiawei Tyler Gu, Zicheng Ma, Tej Chajed, Jon Howell, Andrea Lattuada, Oded Padon, Lalith Suresh,
Adriana Szekeres, and Tianyin Xu. 2024. Anvil: Verifying Liveness of Cluster Management Controllers. In 18th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 24). USENIX Association, Santa Clara, CA, 649-666.
https://www.usenix.org/conference/osdi24/presentation/sun-xudong

Nikhil Swamy, Catilin Hritcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud, Simon Forest, Karthikeyan
Bhargavan, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss, Jean-Karim Zinzindohoue, and Santiago Zanella-
Béguelin. 2016. Dependent Types and Multi-Monadic Effects in F*. In Principles of Programming Languages (POPL).
https://doi.org/10.1145/2837614.2837655

Nikhil Swamy, Tahina Ramananandro, Aseem Rastogi, Irina Spiridonova, Haobin Ni, Dmitry Malloy, Juan Vazquez, Michael
Tang, Omar Cardona, and Arti Gupta. 2022. Hardening attack surfaces with formally proven binary format parsers. In
PLDI °22: 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation, San Diego,
CA, USA, June 13 - 17, 2022, Ranjit Jhala and Isil Dillig (Eds.). ACM, 31-45. https://doi.org/10.1145/3519939.3523708

Aaron Tomb. 2023. Clear Separation of Specification and Implementation in Dafny. https://dafny.org/blog/2023/08/14/clear-
specification-and-implementation/.

Niki Vazou, Eric L Seidel, and Ranjit Jhala. 2014. LiquidHaskell. In Proceedings of the 2014 ACM SIGPLAN symposium on
Haskell. ACM.

Michael Waterman, James Noble, and George Allan. 2015. How Much Up-Front? A Grounded theory of Agile Architecture.
In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering. https://doi.org/10.1109/ICSE.2015.54
Niklaus Wirth. 1971. Program development by stepwise refinement. Commun. ACM 14, 4 (April 1971), 221-227. https:

//doi.org/10.1145/362575.362577

Yi Zhou, Jay Bosamiya, Yoshiki Takashima, Jessica Li, Marijn Heule, and Bryan Parno. 2023. Mariposa: Measuring SMT
Instability in Automated Program Verification. In 2023 Formal Methods in Computer-Aided Design (FMCAD). 178-188.
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_26

Zigiao Zhou, Anjali, Weiteng Chen, Sishuai Gong, Chris Hawblitzel, and Weidong Cui. 2024. VeriSMo: A Verified Security
Module for Confidential VMs. In 18th USENIX Symposium on Operating Systems Design and Implementation (OSDI 24).
USENIX Association, Santa Clara, CA, 599-614. https://www.usenix.org/conference/osdi24/presentation/zhou

Received 2025-03-26; accepted 2025-08-12

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 403. Publication date: October 2025.

https://doi.org/10.1007/978-3-662-46669-8_33
https://doi.org/10.1145/3720426
https://doi.org/10.1145/2652524.2652551
https://www.usenix.org/conference/osdi24/presentation/sun-xudong
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1145/3519939.3523708
https://dafny.org/blog/2023/08/14/clear-specification-and-implementation/
https://dafny.org/blog/2023/08/14/clear-specification-and-implementation/
https://doi.org/10.1109/ICSE.2015.54
https://doi.org/10.1145/362575.362577
https://doi.org/10.1145/362575.362577
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_26
https://www.usenix.org/conference/osdi24/presentation/zhou

	Abstract
	1 Introduction
	2 Background
	3 Method
	4 Results: Impact of Verification on Development
	4.1 Specification
	4.2 Proof Development
	4.3 Proof debugging
	4.4 Proof hardening

	5 Results: Impact of Verification on Assurance Methods
	5.1 Testing
	5.2 Code Review

	6 Results: Impact of Verification on Packaging
	7 Results: Impact of Verification on Maintenance
	8 Opportunities for Improving Verified Software Engineering
	8.1 Engineering Specification and Proof
	8.2 Integrating Verification with Other Development Processes

	9 Related work
	10 Conclusion
	Acknowledgments
	References

